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ABSTRACT Using the  theory  of large deviat ions,  we consider  
the  eflect of rate  control  o n  the  large buf ler  a sympto t i c s  of bursty  
arrival s treams en te r ing  a c o m m u n i c a t i o n  ne twork .  W e  deter-  
m i n e  the  “effective bandwidth” of t h e  o u t p u t  s t r eam f r o m  a rate  
control throt t le ,  and  propose th.2 idea of a sel f - tuning rate  throttle 
which e s t ima tes  t h e  “optimal” t o k e n  or release rate  in  t e r m s  of 
m i n i m i z i n g  the  output’s  e f fect ive  bandwidth subject t o  a loss  o r  
delay constraint .  
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Figure 1: Leaky-bucket input control 
In this note we consider the impact of rate control throt- 

tles used in high speed networks to  regulate packetized in- 
formation flows. Such devices are used as “throughput- 
burstiness” filters for packet streams in broadband inte- 
grated services digital networks (B-ISDN) using the asyn- 
chronous transfer mode (ATM), as well as for overload con- 
trol in ccmputer and communication systems when the ar- 
rival rate of jobs exceeds the system’s capacity, see Berger 
et ;d. [ 3 ,  41 and references therein for more discussion. 

We will discuss the popular “leaky bucket” rate throttle 
shown in Figure 1. It operates as follows: Multiple packets 
or jobs A, arrive at each time slot n ,  while tokens arrive ac- 
cording to  another random process, usually taken to  be de- 
terministic, with rate p larger than the mean arrival rate of 
packets. Packets consume tokens and leave instantaneously 
if they are available. Tokens that  arrive when the token 
buffer of size T is full are discarded. Packets that  arrive 
when no tokens are available are delayed until tokens come 
in. Ilere we will consider the case where the packet buffer 
H ,  is quite large, or alternatively we assume the throttle is 
designed for very low packet loss rates. In addiiion a scheme 
for allowing excess arrivals to  ecter the network as low pri- 
ority traffic can also be included, via a peak rate threshold 
a.t the output of the controller or by labeling traffic arriv- 
ing to a full packet buffer as low priority. When congestion 
occi l rs in thc network, low priority traffic can be discarded 
to  relieve the system. Herein we will only consider the de- 
parture process D,, noting tha t  the impact of thresholding 
is highly non-linear and traffic dependent, see [8] for further 
discussion. 

In our formulation the network designer must select the 
token buffer size T and the token arrival rate p,  given a fixed 
available buffer size B and possibly unknown but hopefully 
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stationary arrival traffic statistics. His goal is t o  reduce 
the “burstiness” of the output stream, so as to  minimize 
the network resources required to  buffer traffic fluctuations, 
while sat,isfying a statistical loss or delay constraint at the 
network edge. The resources required by a traffic stream in 
the network are measured via the notion of output stream’s 
e f f ec t i ve  b a n d w i d t h .  This roughly characterizes bandwidth 
requirements of the stream, see [14, 12, 5, 16, 11, 17, 81 and 
many references therein. Another notion of optimality is 
investigated in [l]. 

We then propose the idea of a self-tuning traffic shaper, 
which when confronted with unknown statistics but a known 
loss (or delay) constraint a t  the edge of the network, esti- 
mates the optimal release rate, subject to  the performance 
constraint. This is a first step towards robust traffic control. 
The idea of combining bandwidth al!ocation, rate control, 
and estimation is not new, see for example [13]. 

2 Background - Large Deviations and Ef- 
fective Bandwidths 

Our arguments are based on large deviations results, so 
me begin with a very brief review; for a complete reference 
on the subject see Dembo et al. [9]. Consider the distribu- 
tions {p,} of the partial sums n-lS,  = n-l A,, for 
a sequence of real-valued random variables {An} .  We say 
that  {A,}  satisfies a large deviation principle (LDP) with 
a good r a t e  functzon I ( . )  if for every closed set F and open 
set G. 

1 
limsup - log p n ( F )  5 - inf l(z) and 

n-cO R x E F  
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1 
lim inf - log ,un (G) 2 - inf I( x) ~ 

n i c x  n zEG 

where {x : 1(x) 5 a }  is compact for a < ca. Thus for exam- 
ple if the sequence is stationary with mean m, the probabil- 
ity that  the empirical mean over a long time interval [l, n] 
exceeds a > m is given by 

s, P(- 2 a )  G exp[-nl(a) + o(n)], 
n 

where limnim o(n)/n = 0. Below we briefly discuss when 
such bounds do indeed hold. 

The Gartner-Ellis Theorem establishes the existence of an 
LDP with a convex good rate function for a large class of 
sources. I t  requires that the limits 

n 1 
A(@) = lim - loglEexp[BS,], 

n-m 71. 

exist (possibly infinite) for all B E R, in addition to  two 
important but technical assumptions, see [9]. With these 
conditions in place an  LDP holds with a good rate function 
given by the convex dual A*( . ) ,  of A(. ) :  

Z(X) A*(z) S U ~ [ B Z  - A(@)]. 
ti 

This result applies to  i.i.d. sequences with F . e t i A 1  < ca for all 
8, which corresponds to  the original large deviation estimate 
of Cram&. LDPs can also be found for sequences with weak 
dependencies, e.g., coordinate functions of Markov processes 
and mixing sequences, see 1191. 

In this note the effective bandwidth, a(6) associated with 
a traffic stream { A n } ,  corresponds to  the minimum deter- 
ministic service rate required to  satisfy a quality of service S.  
More specifically for a stationary discrete-time queue with 
input {A,}, service rate e ,  and stationary queue length Q ,  
we have that 

where B is to  be interpreted as a large buffer. Thus in 
practice given that the service rate c of a queue satisfies 
a(S) 5 c ,  we can conclude that the probability of overflow is 
roughly given by exp[-SB], which permits making resource 
management decisions subject to  statistical loss (or delay 
constraints); e.g., the probability of buffer overflow should 
be no more than lo-’. A further key property is tha t ,  when 
multiple independent streams share a queue, the effective 
bandwidth of the aggregate is the sum of the individual 
contributing streams; thus, i t  is easy to  test whether the 
superposition of scveral heterogeneous traffic streams will 
satisfy such a constraint. In general for streams satisfying 
an LDP, the effective bandwidth is given by a(6) = A(6)/S. 
For further discussion see the aforementioned references and 
many references therein. 

3 Departure process from a leaky-bucket 
corit roller 

The intuition on which our analysis is based, is that  de- 
viations in the empirical mean of the output from a “flow- 
conserving” traffic shaping device, necessarily correspond to 
those of the input unless packets are accumulating within. 
Thus the rate function of the output stream will equal that  
of the input as long as no accumulation is taking place. This 
intuition led to  the following result characterizing the out- 
put of a deterministic discrete time queue: 

Theorein 3.1 [For details see [7]] Let {A,} be a stationary 
ergodic arrival process, such that EA1 = m < c , whzch 
either satisfyzng a “nice” LDP such that for all 0 < 00 

n 

A(@) = lim - l o g E e x p [ B ~ A i ]  1 < 00, 
n i m  n 

i=l 

and with A*(.)  is strictly convex1. Then the Lindley process 

Q n + i  = [Qn + An - e]’ ( 2 )  

has a stationary distribution, say that of a random variable 
Q,  and the associated departure process {D,} satisfies an 
LDP with with convex good rate function given by A*( . )  on 
[O, e] and infinite on [O,  cl‘. 

We use the following as a rough model for the dynamics 
of a leaky bucket controller: 

Q,+l = max[-T, Qn + A, - PI ,  ( 3 )  

where the token queue is given by-QT = max[O,-~,],-while 
the cell buffer queue is given by Q,” = max[O, Qn]. Observe 
that the underlying dynamics are those of a random walk 
reflected a t  -T, while the dynamics of the queue in Theorem 
3.1 were those of a random walk reflected at 0. 

We will show that the departures from a leaky bucket 
controller have the same rate function as those from a 
discrete-time queue with service rate c = p. Let St, Sf 
and St, 3: denote the cumulative arrivals and departures 
for the discrete-time queue and leaky bucket (respectively) 
over the time interval [I1 n]. 

Let Q, = Qn - T and note tha t  if Qn satisfies Eq. 2, 
then Qn satisfies Eq. 3. Moreover, cumulative departures 
of the leaky bucket are given by 3: = S! - Qf+l while 
the cumulative departures from a deterministic queue are 
given by 5’; = St - Qn+l. Starting both systems empty 
they converge to  steady state, and it should be clear that 
3; 2 Sf, hence 

- 

- A * ( a )  

‘See reference for details. A typical application would be to sources 
with bounded arrivals satisfying the Gartner-Ellis Theorem. 
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Where the last inequality follows from Theorem 3.1 as long 
as a E [0, p]. We have shown a large deviations lower bound 
for open sets of the form ( U ,  CO), the same argument follows 
for open balls from which we get the lower bound for open 
sets. 

The  large deviations upper bound is a little more dif- 
ficult. One seeks an upper bound not by starting with 
an empty system but  by bounding the possible content 
of the system in steady state. Indeed, in steady state 
the cumulative output  of the controller is bounded above: 
3; 5 St + QB 5 St + Q, where QB and Q denote the 
stationary distributions in the leaky bucket’s cell buffer and 
tha t  of the deterministic queue with the same service rate. 
The  result now follows the proof of Theorem 3.1 where the 
fact that  Q has finite exponential moments Eexp[BQ] < CO 

for some range of 0,  and the Chebychev bound are used to  
establish tha t  the LDP of 3: is tha t  of St in the interval 
if interest, i.e,, 

(4) 
1 

l imsup - logP(Sf 2 na)  5 -A*(&),  
n i c e  

see [7] for the details of a similar argument used to  prove 
Theorem 3.1. Clearly the output rate from leaky bucket 
cannot exceed p so the rate function is infinite outside of 
the interval [0, p].  As for the lower bound we can extend the 
upper bound for closed sets [a ,  CO) to  arbitrary closed sets 
by considering F contains the mean, see Dembo et al. [9]. 

Thus  the rate function for the stationary departure pro- 
cess from a leaky bucket controller, is simply that  of the 
input stream on [0, p] and infinite otherwise. The effective 
bandwidth for the output process is given by a ~ ( 6 , p )  = 
A ~ ( 6 ) / 6  where A,(.) is the convex dual of the departure 
process’ rate function, see $2. This gives 

[OUTPUT EFFECTIVE BANDWIDTH FOR LEAKY BUCKET] 

if a*(&)  < p ,  
(5) 

p -  A*(p) otherwise, 
a D ( 6 ,  p)  = 

1 I 

where a*(&)  is defined implicitly by the convex duality rela- 
tionship A(6) = a * ( 6 ) 6 - R * ( ~ * ( 6 ) ) .  Note that  p - i  A*(p) 5 
~(6)’ so for some values of 6 the throttle can reduce the ef- 
fective bandwidth of the arrival stream. The  quantity a*(&) .  
introduced in [7] as the decoupling bandwidth, turns out to 
be smaller than the peak rate of the stream (if it exists) and 
always larger than  the effective bandwidth, that  is 

peak rate > a*(&)  > a(&) .  ( 6 )  

Based on this input-output relationship for the effective 
bandwidth of a stream passing through a leaky bucket con- 
troller we can consider several design scenarios. 

3.1 Minimizing output effective bandwidth 
subject to an overflow or loss constraint 

Suppose we are given a statistical overflow constraint 6, 
on the leaky bucket controller of the form 

where B denotes a reasonably large input cell buffer, and 
QB has the steady state distribution of cells in in a leaky 
bucket with token rate p. Thus,  roughly, the constraint 
might ensure a small probability of overflow 

P ( Q B  > B )  5 exp[-S,B] M lo-’, 

for an appropriate choice of 6,. 
The goal is to  determine the “optimal” token rate in terms 

of minimizing the departure processes’ effective bandwidth 
subject to  this performance constraint. Mathematically can 
we express the optimal control p* as the solution to ,  

min 
P > O  

such that  limB,, & logPQ(QB > B) 5 -6, (7) 

Let us express the size of the token buffer T as a fraction 
t of the job buffer, tha t  is T = tB .  Recall from our earlier 
derivation that  

B JP(Q > B) = Pp(Q > B + T )  = PQ(Q > B(1+ t ) ) ,  

where Q has the steady state queue length distribution of a 
discrete-time queue with service rate p. The constraint in 
Eq. 7 will be satisfied as long as 

-60, 

now comparing with Eq. 1 we see tha t  we need only require 

Since the cost, ~ ~ ( 6 , p )  is non decreasing in p for all 6 
(see Eq. 5) the optimal token rate is p* = a(S, / ( l+t));  t,his 
is the slowest release rate that  satisfies the overflow con- 
straint~. Thus traffic arrives into the controller gets queued 
as much as possible and is released smoothly into the net- 
work. For this release rate the effective bandwidth of the 
output stream is given by: 

that  ~ ( 6 , / ( 1 +  t))  L p. 

p* = cU(6,/(1 + t ) ) )  [OPTIMAL TOKEN RATE] ; 

[OUTPUT EFF. BAND.], 
(8) 

a D ( 6 ,  P-) 

where the argument 6 corresponds t o  a desired &OS in the 
network and 6, is a &OS constraint on overflows in the throt- 
tle’s cell buffer. Further consideration of Eqs. 5, 6 along 
with remarks following these equations, we find tha t  in the 
usual scenario where 6 = 6,, the  effective bandwidth of the 
output can in fact be reduced. Note tha t  we have ignored 
the effects of actual losses in the leaky bucket on the premise 
that  they are indeed small, and to  be avoided a t  all costs. 
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3.2 Minimizing the output effective band- 
width subject to a statistical delay con- 
straint. 

When a statistical d e l a y  constraint a t  the traffic shaper 
is specified rather than an overflow (or loss) constraint the 
problem is significantly more complex. As in the previous 
case a change in the token rate will affect the asymptotic tail 
disribution of the occupancy in the job buffer. We can then 
determine how long i t  will take t o  empty the work therein 
by dividing by the token rate. Thus  the token rate affects 
the delay performance via two mechanisms and the optimal 
rate of release represents a compromise between these two 
mechanisms. We will see that  unfortunately the compromise 
reduces to  solving a nonlinear equation. 

The  statisitcal delay constraint is specified as 

1 
D-w D lim - logPQ(V > 0) 5 - 6d 

where V denotes stationary virtuad d e l a y  in the leaky bucket 
and 5d is to  be understood as a constraint on the tail dis- 
tribution of delays.’ D is assumed to  be relatively large so 
we are aiming to  have a rough estimate on the probability 
of large delays of the form P(V > D )  5 exp[-6dD]. We 
consider minimizing the output effective bandwidth subject 
to  this new constraint, tha t  is we replace Eq. 7 with the 
above delay constraint. 

In the spirit of these approximations we compute 

Pp(V > D )  M Pp(Q > D / p  + T )  = P ( Q  > B(1+ t ) )  

where B = D/p. The delay constraint is satisfied if 

By comparing with Eq. 1 we see that  this will be the case if 
a(6) p where 6 = 6dp/(l + t )  so the optimal release rate 
p* should satisfy 

a(6dp*/(1 + t ) )  = p* 

Q D  (51 P * )  

[OPTIMAL TOKEN RATE] 

[OUTPUT EFF. B A N D . ] .  
(9) 

4 Towards Self-tuning Optimal Traffic 
Shaping 

It is unclear whether the statistical measurements re- 
quired to  obtain the effective bandwidth of a source can 
be carried out prior to  the transmission of a traffic stream. 
However, it is likely that  a QoS constraint on the delays or 

The virtual delay is that which an external observer would see if 
he came in at some typical time. In general, we are interested in the 
typical delay of actual customers, however this quantity is very difficult 
to work with, outside of the Poissonian framework. 

losses required by a particular application, e.g., video or au- 
dio, can be determined a-priori. A self-tuning traffic shaper 
monitors the arrival process and selects the token or release 
rate such that  the effective bandwidth a t  the output is min- 
imized subject to  a known buffering constraint] see Figure 
2. The advantage is that  only the constraint needs to  be 
specified while the actual traffic statistics may in fact be 
unknown. Moreover in practice such a scheme might track 
slowly varying traffic statistics. 

Input Buffer 

6 I Q n  U Toke;poo’ 
...................... 1 i i  t :  

L ...... j a@)? ; ................... ; 
Effective Bandwidth Estimator 

Figure 2: Self-tuning traffic shaper 

In the previous section we found t h a t ,  given a 6, con- 
straint on cell buffer overflows, the optimal token rate 
corresponded to  the effective bandwidth a(&)  where 6 = 
6,/(1 + t ) ) .  Recall that  a( . )  is is given by 

n 
1 a(&) = 4 6 n+m lim - n l o g E e x p [ 6 C A i ]  

i = l  

The tuning part of the traffic shaper monitors the input and 
estimates the optimal release rate a(&).  

In order for this setup to  work we require a consistent 
online estimator for this quantity. If the arrivals were i.i.d. 
then the following would work 

If the arrival process is approximately regenerative a t  ran- 
dom times { ~ } ~ , ,  we need only estimate the regen- 
eration rate l/ET, and estimate the average value of 
Eexp[S Ai] where T denotes the typical time to  re- 
generate. Thus,  

where Ai,j denotes the arrivals in the ith slot of the j t h  re- 
generation cycle, see Asmussen [a] [page 1321. The following 
is then a consistent estimator of the desired quantity 

A n  
6 an(6) = - logC, + N ( 6 )  

1210 

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 11, 2009 at 11:17 from IEEE Xplore.  Restrictions apply. 



This may however take some time to  converge if regener- 
ations are lengthy. Ideally, we wish to  make even weaker 
assumptions about the input process, e.g., mixing, and still 
find an approximate estimate of the  desired quantity. In 
such case we might use block methods as suggested in [lo].  

In the case where a delay constraint has been placed at 
the leaky bucket a combination of a numerical method to  
solve Eq. 9 and estimation would be required to  determine 
the optimal release rate without prior knowlege of the arrival 
statistics. 

We are currently investigating the tradeoffs and effecitve- 
ness of several possible estimation methods. We believe that  
direct measurements of the effective bandwidth, as proposed 
above, can result in good estimates, rather than modelling 
of traffic statistics combined with a numerical or analytical 
exploration of bandwidth requirements. Other approachs 
to  this problem might use indirect estimation methods [15] 
combined with interpolation, see for example [6]. 

Acknowledgement: We thank an anonymous reviewer 
for a detailed (and enthusiastic) critique of a previous ver- 
sion of this note. 
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